Tuesday, July 12, 2011

Sound barriers

In aerodynamics, the sound barrier usually refers to the point at which an aircraft moves from transonic to supersonic speed. The term came into use during World War II when a number of aircraft started to encounter the effects of compressibility, a collection of several unrelated aerodynamic effects that "struck" their planes like an impediment to further acceleration. By the 1950s, new aircraft designs started to routinely "break" the sound barrier.
This is the image of a jet travelling past a sound barrier, actually a sound barrier occurs when the aircraft (or) so called flight travels beyond the speed of the sound. Generally the MACH flights undergo this sound barrier effect.
More pictures for the sake of your understanding below.....




In the past:

Some common whips such as the bullwhip or sparewhip are able to move faster than sound: the tip of the whip breaks the sound barrier and causes a sharp crack—literally a sonic boom. Firearms since the 19th century have generally had a supersonic muzzle velocity.
The sound barrier may have been first breached in nature some 150 million years ago. Some paleobiologists report that, based on computer models of their biomechanical capabilities, certain long-tailed dinosaurs such as apatosaurus and diplodocus may have possessed the ability to flick their tails at supersonic velocities, possibly used to generate an intimidating booming sound. This finding is theoretical and disputed by others in the field.

The early problems related to sound barriers:

The tip of the propeller on many early aircraft may reach supersonic speeds, producing a noticeable buzz that differentiates such aircraft. This is particularly noticeable on the Stearman, and noticeable on the T-6 Texan when it enters a sharp-breaking turn. This is undesirable, as the transonic air movement creates disruptive shock waves and turbulence. It is due to these effects that propellers are known to suffer from dramatically decreased performance as they approach the speed of sound. It is easy to demonstrate that the power needed to improve performance is so great that the weight of the required engine grows faster than the power output of the propeller. This problem was one of the issues that led to early research into jet engines, notably by Frank Whittle in England and Hans von Ohain in Germany, who were led to their research specifically in order to avoid these problems in high-speed flight.
Propeller aircraft were, nevertheless, able to approach the speed of sound in a dive. This led to numerous crashes for a variety of reasons. These included the rapidly increasing forces on the various control surfaces, which led to the aircraft becoming difficult to control to the point where many suffered from powered flight into terrain when the pilot was unable to overcome the force on the control stick. The Mitsubishi Zero was infamous for this[citation needed] problem, and several attempts to fix it only made the problem worse. In the case of the Supermarine Spitfire, the wings suffered from low torsional stiffness, and when ailerons were moved the wing tended to flex such that they counteracted the control input, leading to a condition known as control reversal. This was solved in later models with changes to the wing. The P-38 Lightning suffered from a particularly dangerous interaction of the airflow between the wings and tail surfaces in the dive that made it difficult to "pull out", a problem that was later solved with the addition of a "dive flap" that upset the airflow under these circumstances. Flutter due to the formation of shock waves on curved surfaces was another major problem, which led most famously to the breakup of de Havilland Swallow and death of its pilot, Geoffrey de Havilland, Jr.
All of these effects, although unrelated in most ways, led to the concept of a "barrier" that makes it difficult for an aircraft to break the speed of sound.
the post is for all the lovers of physics go enjoy reading the stuff....................

No comments:

Comments

blog comments powered by Disqus